Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 245: 120625, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820474

RESUMO

Capacitive electrodialysis (CED) is an emerging and promising desalination technology for decentralized drinking water production. Brackish water, often used as a drinking water source, may contain organic micropollutants (OMPs), thus raising environmental and health concerns. This study investigated the transport of OMPs in a fully-functional decentralized CED system for drinking water production under realistic operational conditions. Eighteen environmentally-relevant OMPs (20 µg L-1) with different physicochemical properties (charge, size, hydrophobicity) were selected and added to the feed water. The removal of OMPs was significantly lower than that of salts (∼94%), mainly due to their lower electrical mobility and higher steric hindrance. The removal of negatively-charged OMPs reached 50% and was generally higher than that of positively-charged OMPs (31%), whereas non-charged OMPs were barely transported. Marginal adsorption of OMPs was found under moderate water recovery (50%), in contrast to significant adsorption of charged OMPs under high water recovery (80%). The five-month operation demonstrated that the CED system could reliably produce water with low salt ions and TOC concentrations, meeting the respective WHO requirements. The specific energy consumption of the CED stack under 80% water recovery was 0.54 kWh m-3, which is competitive to state-of-the-art RO, ED, and emerging MCDI in brackish water desalination. Under this condition, the total OPEX was 2.43 € m-3, of which the cost of membrane replacement contributed significantly. Although the CED system proved to be a robust, highly adaptive, and fully automated technology for decentralized drinking water production, it was not highly efficient in removing OMPs, especially non-charged OMPs.


Assuntos
Água Potável , Purificação da Água , Cloreto de Sódio , Íons , Adsorção , Águas Salinas
2.
Water Res ; 165: 114985, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445307

RESUMO

Low pressure membranes, such as ultrafiltration (UF), are widely used in water treatment applications, including the pretreatment of reverse osmosis desalination. UF membranes produce a water of superior quality, in addition to reducing the footprint and the use of chemicals, compared to conventional methods. However, membrane fouling remains a major drawback, and frequent membrane cleanings are required to maintain the flux of water and its quality. Typically, after a series of backwashes using an UF permeate, a chemical cleaning process is applied to fully recover the membrane's permeability. However, frequent chemical cleanings negatively affect the lifetime of the membrane, the environment, and increase operational costs. Here, we introduce a novel cleaning method that uses a solution saturated with CO2 to clean the membranes through the backwash step. As the pressure drops, the CO2 solution becomes supersaturated, and bubbles start to nucleate within the membrane pores and on its surface, resulting in the effective removal of the deposited fouling material. These foulants are further helping the nucleation process as they are considered as imperfection sites with high creation and growth of bubbles. Investigations performed for different synthetic feed solutions of organic compounds (sodium alginate), colloidal matter (silica) and sea salts, at different concentrations, show that our new physical cleaning process using CO2 is more performant than the regular backwash using Milli-Q water. We obtain a 100% flux recovery, in a short time, even under severe irreversible fouling conditions. Based on these results, we conclude that replacing water by a solution saturated with CO2 for the backwash cleaning of filtration membranes provides significant benefits to existing cleaning processes, and represent a promising alternative for improving and lowering the frequency of conventional chemical cleaning methods.


Assuntos
Membranas Artificiais , Purificação da Água , Dióxido de Carbono , Filtração , Osmose , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...